Mechanochemical synthesis of SnO-B₂O₃ glassy anode materials for rechargeable lithium batteries

A. HAYASHI^{*}, M. NAKAI, H. MORIMOTO, T. MINAMI, M. TATSUMISAGO Department of Applied Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan E-mail: hayashi@ams.osakafu-u.ac.jp

The xSnO·(100 – x)B₂O₃ (0 $\leq x \leq$ 80) glasses were successfully prepared by a mechanical milling technique. The glass with 40 mol% SnO showed the maximum glass transition temperature of 347°C. The SnO-B₂O₃ milled glasses consisted of both BO₃ and BO₄ units, and the fraction of BO₄ units was maximized at the composition of 50 mol% SnO. The electrochemical properties of the milled glasses were examined using a simple three electrodes cell with a conventional liquid electrolyte. The glasses with high SnO content exhibited high charge capacities more than 1100 mAh g⁻¹ and discharge capacities more than 700 mAh g⁻¹ at the first cycle. The SnO-B₂O₃ milled glasses proved to work as anode materials for rechargeable lithium batteries. © 2004 Kluwer Academic Publishers

1. Introduction

Lithium ion secondary batteries have been rapidly popularized as a power source for portable electronic devices such as video cameras, laptop computers and cell phones because the batteries have high energy density and lightweight. Novel electrode materials with higher capacity are desired in order to improve battery properties. SnO-based oxide glasses prepared by a conventional melt-quenching technique have been studied intensively as anode materials for rechargeable lithium batteries [1–5] because these glasses exhibit high specific capacities twice that of carbonaceous materials, which are commercially used as anode materials for lithium ion secondary batteries.

These SnO-based glasses were obtained by a mechanical milling technique using a high-energy ballmill apparatus. We have succeeded in preparation of the $SnB_{0.5}P_{0.5}O_3$ glassy powder by mechanical milling, and confirmed that the glass worked as an anode material for rechargeable lithium batteries [6]. The mechanochemical synthesis has a favorable feature that fine powders are directly obtained without an additional pulverizing process of bulk glasses at room temperature.

In the present study, glassy anode materials in the simple binary system $SnO-B_2O_3$ were prepared by mechanical milling. Glass transition temperature and local structure of the milled glasses with wide compositions were investigated. The electrochemical properties of the milled glasses were examined using a simple three electrodes cell with a conventional liquid electrolyte.

2. Experimental

Reagent-grade chemicals of crystalline SnO (Furuuchi Chem., 99.9%) and amorphous B_2O_3

(Koujundo Chem., 99.9%) powders were used as starting materials for sample preparation. The mechanical milling treatment was carried out for the batches (2 g) of the mixed materials of $x \operatorname{SnO}(100 - x) \operatorname{B}_2 \operatorname{O}_3(0 \le x \le 85)$ in a zirconia pot (volume of 45 ml) with eight zirconia balls (10 mm in diameter) using a high-energy planetary ball mill apparatus (Fritsch Pulverisette 7). The rotation speed was fixed at 370 rpm and all the processes were conducted at room temperature in a dry N₂-filled glove box.

X-ray diffraction measurements (Cu K_{α}) were performed using a XRD diffractometer (Shimadzu, XRD-6000). Differential scanning calorimetry (DSC) was carried out using a DSC apparatus (Perkin Elmer, DSC7) for the obtained powder samples sealed in an Al pan in a dry N₂ atmosphere. The heating rate was 10 K/min in the temperature range from 25 to 500°C under N₂ atmosphere in all the measurements. Solid-state ¹¹B MAS-NMR spectra were recorded at 96.23 MHz on a UNITY INOVA 300 NMR spectrometer (Varian, UK). Detailed experimental conditions are given in [7].

Electrode materials were prepared by mixing the glassy powder (70 wt%), acetylene black (20 wt%), and polyvinylidene fluoride (PVDF, 10 wt%) in an agate mortar in a dry Ar-filled glove box. Slurries of the mixture were painted on a Ni mesh as a current collector and then dried. Electrochemical measurements were performed in a simple three-electrode cell with the obtained electrode as a working electrode and lithium sheets as counter and reference electrodes. A mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) with 1:1 volumetric ratio containing 1 mol dm⁻³ (1M) LiPF₆ was used as an electrolyte.

*Author to whom all correspondence should be addressed.

MECHANOCHEMISTRY AND MECHANICAL ALLOYING 2003

3. Results and discussion

XRD measurements showed that the $x \operatorname{SnO}(100 - x)\operatorname{B}_2\operatorname{O}_3$ amorphous materials were obtained in the composition range $0 \le x \le 80$ by mechanical milling for 100 h at room temperature. The SnO crystal as a starting material slightly remained at the composition of 85 mol% SnO even after mechanical milling for over 100 h. Glass-forming limit (higher SnO content) for the system SnO-B₂O₃ by the melt-quenching method was 75 mol% SnO [5].The amorphous material with 80 mol% SnO, which could not be obtained by melt-quenching, was prepared by mechanical milling.

Glass transition phenomena were observed on DSC curves for the prepared amorphous materials, and thus the amorphous materials obtained by mechanical milling proved to be in a glassy state. Fig. 1 shows the composition dependence of glass transition temperature (T_g) for the SnO-B₂O₃ glasses prepared by mechanical milling for 75 h (except for the composition of 80 mol% SnO which was milled for 100 h). The inset shows the DSC curve of the 50SnO·50B₂O₃ (mol%) milled glass as an example. The values of T_g increase up to 40 mol% SnO and then decrease with an increase in the SnO content. At the composition with 80 mol% SnO, T_g increases again. The glass with 40 mol% SnO shows the maximum T_g of 347°C.

The composition dependence of T_g for the milled glasses is almost the same as that for the corresponding melt-quenched glasses except for the compositions with higher SnO content; in the quenched $SnO-B_2O_3$ glasses, T_g increased up to 40 mol% SnO and then decreased with an increase in the SnO content [5]. However, the T_g values of the milled glasses are lower than those of the quenched glasses. For example, the 40SnO \cdot 60B₂O₃ (mol%) milled glass shows a T_g of 347°C while the corresponding melt-quenched glass exhibited a Tg of 384°C. Tsukushi et al. have also reported similar results that T_g of the glassy tri-O-methyl- β -cyclodextrin prepared by milling is lower than that of the corresponding melt-quenched glass [8]. They also mentioned that $T_{\rm g}$ of the milled glass tended to approach $T_{\rm g}$ of the melt-quenched glass with an increase

Figure 1 Composition dependence of glass transition temperatures (T_g) for the SnO-B₂O₃ glasses prepared by mechanical milling. The inset shows the DSC curve of the 50SnO-50B₂O₃ (mol%) milled glass.

Figure 2 ¹¹B MAS-NMR spectra of the xSnO·(100 – x)B₂O₃ glasses prepared by mechanical milling.

in milling time. Although the difference on T_g between the quenched glasses and the milled glasses has not been understood well, the difference could be based on the inhomogeneity of the milled glasses, which is caused by the fact that the milled glasses are obtained from a solid-state interdiffusion process between particles [9] and not from an equilibrium melt state.

Fig. 2 shows the ¹¹B MAS-NMR spectra of the $x \operatorname{SnO}(100 - x)\operatorname{B}_2\operatorname{O}_3$ glasses prepared by mechanical milling. Spinning sidebands are observed in the spectra and marked with asterisks in this figure. The sharp peak at 0 ppm is due to four-coordinated boron (BO₄ units) and the broad peak from -20 to +20 ppm is due to three-coordinated boron (BO₃ units) [10]. This figure indicates that both BO₄ and BO₃ units are present in the $x\operatorname{SnO}(100 - x)\operatorname{B}_2\operatorname{O}_3$ glasses prepared by mechanical milling. The fraction of BO₄ units (N₄) in the glasses was estimated by the relative area method proposed by Bray *et al.* [10]; we determined N₄ as the ratio of the area under the sharp peak to the area under the entire curve.

Fig. 3 shows the composition dependence of the N_4 values for the SnO-B₂O₃ glasses. Estimated

Figure 3 Composition dependence of fraction of four-coordinated boron (N₄) estimated from the ¹¹B MAS-NMR spectra of the xSnO·(100 - x)B₂O₃ glasses.

uncertainties are indicated by the error bars in this figure. The N₄ value increases and then decreases with an increase in the content of SnO. The maximum N₄ value of 0.33 ± 0.05 is obtained at the composition with 50 mol% SnO. The composition dependence of N₄ for the SnO-B₂O₃ glasses prepared by mechanical milling is quite similar to that for the glasses prepared by melt-quenching [7]. The N₄ value of the quenched glasses was also maximized at the composition with 50 mol% SnO, and the maximum N₄ value of 0.28 ± 0.05 is comparable to that of the milled glass under consideration of uncertainties. The local structure around boron atoms of the SnO-B₂O₃ milled glasses.

Charge-discharge measurements were performed using simple three-electrode cells with the SnO-based glasses as a working electrode. A constant current density of 1.0 mA cm^{-2} and a cutoff voltage between 0 and 2.0 V were used. Fig. 4 shows the first charge-discharge curves for the cells using the $x \text{SnO} \cdot (100 - x) \text{B}_2 \text{O}_3$ glasses prepared by mechanical milling. A charge corresponds to an insertion of lithium ions to the working electrode, while a discharge corresponds to an extraction of lithium ions from the working electrode. The abscissa shows the charge-discharge capacities per unit weight of the glasses. Two plateaus at around 1.5 and 0.5 V are observed on the charge curves and one plateau at around 0.5 V is observed on the discharge curves in the cells (except for the cell using the glass with x = 25). In the charge curve, the first plateau is due to the formation of metallic $\operatorname{Sn}^0(\operatorname{Sn}^{2+} \to \operatorname{Sn}^0)$ and the second plateau is due to the formation of Li-Sn alloy (Sn⁰ \rightarrow Li-Sn) [1-4, 11]. The former reaction is known to be irreversible in SnO-based anode materials while the latter reaction is basically reversible. The SnO-B₂O₃ milled glasses prove to work as anode materials for rechargeable lithium batteries. The glasses with x = 50, 67 and 80 exhibit high charge capacities >1100 mAh g⁻¹ and discharge capacities >700 mAh g⁻¹. In particular, discharge capacity and charge-discharge efficiency in the milled glasses of x = 67 and 80 are higher than those in the melt-quenched glasses [5].

Cycling behaviors of the cells using the xSnO·(100–x)B₂O₃ glasses were also examined. Fig. 5 shows the

Figure 4 First charge-discharge curves for the cells using the xSnO-(100 – x)B₂O₃ glasses prepared by mechanical milling. A constant current density of 1.0 mA cm⁻² and a cutoff voltage between 0 and 2.0 V were used. A mixture of 1 M LiPF₆/EC+DEC was used as an electrolyte.

Figure 5 Cycle performances for the cells using the 50SnO $\cdot 50B_2O_3$ (mol%) glass prepared by mechanical milling. A constant current density of 1.0 mA cm⁻² and a cutoff voltage between 0 and 2.0 V were used.

cycle performance for the cell with the 50SnO \cdot 50B₂O₃ glass prepared by mechanical milling. Circles and triangles denote the charge-discharge capacities and chargedischarge efficiency, respectively. The cell exhibits the charge capacity of 1230 mAh g^{-1} and discharge capacity of 710 mAh g^{-1} at the 1st cycle. Both charge and discharge capacities gradually decrease with cycling while the charge-discharge efficiency increases. After 20 cycles the efficiency reaches 100% and the cell retains discharge capacity of 184 mAh g^{-1} . The 50SnO·50B₂O₃ melt-quenched glass showed almost the same discharge capacity of 200 mAh g^{-1} after 20 cycles [5]. In the cell with 80SnO·20B2O3 milled glass showed high discharge capacity of 757 mAh g^{-1} at the 1st cycle and, however, the capacity after 20 cycles was 135 mAh g^{-1} , which is lower than that of $50SnO \cdot 50B_2O_3$. The B₂O₃ glass-matrix plays an important role in improving cyclability of SnO-based anode materials. The capacity fading with cycling on the milled glasses would be overcome by selecting appropriate voltage ranges. We confirmed that cycling performance of the cell using the 50SnO.50B₂O₃ melt-quenched glass was considerably improved by reducing the upper cutoff voltage from 2.0 to 0.8 V [5]. The formation of metallic Sn and its aggregation would occur in the voltage range over 0.8 V at the first discharge process [2]. The large volume change due to the aggregated Sn particles during charge-discharge cycling probably causes the degradation of capacity.

4. Conclusions

The $x \operatorname{SnO}(100 - x)\operatorname{B}_2\operatorname{O}_3$ ($0 \le x \le 80$) glasses were prepared by mechanical milling. The glass with 40 mol% SnO showed the maximum T_g of 347°C and the composition dependence of T_g for the milled glasses was similar to that for the corresponding melt-quenched glasses. The SnO-B₂O₃ milled glasses consisted of both BO₃ and BO₄ units, and local structure around boron atoms in the milled glasses was almost the same as the corresponding quenched glasses. The electrochemical cells using the milled glasses were charged and discharged for 20 cycles under a constant current density of 1.0 mA cm⁻² and a cutoff voltage between 0 and 2.0 V. The glasses with high SnO content exhibited high charge capacities >1100 mAh g⁻¹ and discharge

MECHANOCHEMISTRY AND MECHANICAL ALLOYING 2003

capacities >700 mAh g⁻¹ at the first cycle. The cell with 50SnO \cdot 50B₂O₃ glass retained discharge capacity of 184 mAh g⁻¹ with the charge-discharge efficiency of 100% after 20 cycles. The SnO-B₂O₃ milled glasses as well as the quenched glasses proved to work as anode materials for lithium secondary batteries.

Acknowledgements

This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- 1. Y. IDOTA, T. KUBOTA, A. MATSUFUJI, Y. MAEKAWA and T. MIYASAKA, *Science* **276** (1997) 1395.
- 2. I. A. COURTNEY and J. R. DAHN, J. Electrochem. Soc. 144 (1997) 2943.

- 3. J. Y. LEE, Y. XIAO and Z. LIU, *Solid State Ionics* **133** (2000) 25.
- 4. G. R. GOWARD, L. F. NAZAR and W. P. POWER, J. *Mater. Chem.* **10** (2000) 1241.
- 5. M. NAKAI, A. HAYASHI, H. MORIMOTO, M. TATSUMISAGO and T. MINAMI, J. Ceram. Soc. Jpn. 109 (2001) 1010.
- 6. H. MORIMOTO, M. NAKAI, M. TATSUMISAGO and T. MINAMI, J. Electrochem. Soc. 146 (1999) 3970.
- 7. A. HAYASHI, M. NAKAI, M. TATSUMISAGO, T. MINAMI, T. HIMEI, Y. MIURA and M. KATADA, *J. Non-Cryst. Solids* **306** (2002) 227.
- 8. I. TSUKUSHI, O. YAMAMURO and H. SUGA, J. Therm. Anal. 37 (1991) 1359.
- 9. R. B. SCHWARZ and C. C. KOCH, *Appl. Phys. Lett.* **49** (1986) 146.
- 10. P. J. BRAY, J. Non-Cryst. Solids 73 (1985) 19.
- 11. A. HAYASHI, M. NAKAI, M. TATSUMISAGO, T. MINAMI and M. KATADA, J. Electrochem. Soc. 150 (2003) A582.

Received 11 September 2003 and accepted 27 February 2004